

MIKRODALGA ALGILAMA SİSTEMLERİ

Saygın ABDİKAN

Bülent Ecevit Üniversitesi Geomatik Mühendisliği Bölümü e-mail: <u>sabdikan@beun.edu.tr</u>

- > Uzaktan algılamada mikrodalgaya giriş
- Sentetik (Yapay) Açıklıklı Radar (SAR)
- SAR ın sistem parametreleri
- > Hedef nesne parametreleri
- > Yüksek çözünürlüklü SAR uydu sistemleri
- > Uygulama alanları

Elektromanyetik Spektrum - Mikrodalga

	400 nm	1450 nm	500 nm	550 nm	600 nm	l 650 nm	700 nm	750 nm
	Gamma ışınları	Röntgen ışınları	Morötesi ışınlar	Kızılötesi ışınlar	Radar Mikrodalgalar -	UHF VHF Kisa dalg Rady	Orta dalga ja Uzun dalga	Çok uzun ve a uzun dalgala ses dalgala
1fm	1pm	1nm		1µm 1	mm	1m	1km	1Mm

- Fiziksel etkileşimin olmadığı uzaktan algılamada bilgi aktarımı elektromanyetik ışıma (EMR) ile gerçekleştirilir.
- Uzaktan algılamada kullanılan en uzun dalga boyu mikrodalga bölgesindedir,
- Dalgaboyu ~1 mm-1m arasında değişir, ancak uydu sistemlerinde 2 ile 23 cm arasındadır

OLENT

Aktif Uzaktan Algılama

- Aktif radar sistemlerinde ise temel prensip, hedefe bir anten tarafından aynı fazda ve benzer özellikte (coherent) enerji dalgaları gönderilen ve cisme çarparak geri dönen enerjinin tekrar anten tarafından algılanması ve kaydedilmesidir.
- Aktif mikrodalga algılayıcılar görüntü kaydeden ve kaydetmeyenler olmak üzere ikiye ayrılmaktadırlar. Görüntü kaydeden aktif mikrodalga algılayıcılar olarak en iyi bilinenler RADAR'lardır.
- RADAR (RAdio Detection And Ranging) (radyo dalgalari ile tespit etme ve menzil tayini)

Aktif Uzaktan Algılama

- Algılayıcı sistem, mikrodalga enerjiyi hedefe yollamakta ve bu yolladığı sinyalin geri saçılan miktarını kaydetmektedir.
- Geri saçılma miktarı
 - Objeleri birbirinden ayırt edebilmek için ölçülür
 Yollanan ve dönen sinyal arasındaki zaman farkı da hedef ve uydu arasındaki mesafeyi belirler

Neden SAR?

Gündüz & Gece

Neden SAR ?

Hemen hemen atmosferik koşullardan bağımsız olarak yüksek radyometrik ve geometrik çözünürlük sağlar

Neden SAR?

- Gündüz ve gece görüntü alımı
- Hemen hemen her hava koşulunda görüntü sağlaması
- Yüzeyden ve yüzeyin altına ait bilgi elde edilmesi
 - Kullanılan dalga boyuna bağlı olarak bitki örtüsüne ve toprağa neşretme özelliği (penetration) taşır.
- Optik sistemler ile tamamlayıcı rol oynar
- Geniş uygulama alanı sağlar
 - Tarım, orman, doğal afet, hidroloji, buzul
- Nesne özelliklerine göre ölçümler
 - Yüzey pürüzlülüğü, nesne geometrisi, dielektrik özelliği

Yan bakışlı radar geometrisi

Yan bakışlı radar geometrisi

Yan bakışlı radar geometrisi

Neden yan bakışlı?

http://www.csr.utexas.edu/projects/rs/whatissar/rar.html

Görüntü analizi

- □ Sistem parametreleri
 - Radar geometrisi
 - Çözünürlük
 - Dalga boyu
 - Polarizasyon
- Hedef nesne parametreleri
 - Geri saçılım (backscatter)
 - Hacimsel saçılım
 - Yüzeyi neşretme (penetration)
 - Yansıtım
 - Benek gürültü (salt&pepper)

Sistemin

- Bakış açısı (look angle), nadir noktası ile hedef arasındaki açıdır
- Eğim açısı (depression angle), bakış açısının bütünleyenidir
- Geliş açısı (incident angle), bakış açısının yer yüzeyinin normali ile yaptığı açıdır.
- Optik sistemlerden farklı olarak radarın yersel ayırma gücü, azimut ya da iz boyunca (along track) ve ize dik yönde (across track) çözünürlük şeklinde ayrı ayrı tanımlanır.

Algılayıcı

Radar geometrisi (Lillesand ve Kiefer, 1999)

- Radar uyduları yollanan ve geri dönen her bir radar darbesi (pulse) arasındaki zaman farkını ölçer bu da nesnelerin yerlerinin hassas bir şekilde belirlenmesini sağlar.
- Gönderilen bu sinyalin (enerjinin) yayılım hızı bilindiğinden obje ile enerji gönderen anten arasındaki eğik uzaklık (slant range) hesaplanabilmektedir. Enerji havada yaklaşık 300x10⁶ km/sn ışık hızı ile yayılır.

$$R = \frac{ct}{2}$$

R: sinyalin gönderildiği radar anteninden nesneye olan eğik mesafe c: ışık hızı ve

t: gönderilen ve dönen sinyal darbesi arasında geçen süredir

Vuruş süresi ve nesnelerin ayıt edilebilirliği [<u>www.ccrs.nrcan.gc.ca</u>] İze dik yönlü çözünürlük (range) sinyalin yüzeye geliş açısı ve darbe vuruş süresi (P) ile belirlenir.

1 ve 2 hedefleri ayırt edilemezken 3 ve 4 hedefleri birbirinden ayırt edilecektir.

Eğik ve yatay uzaklık arasındaki ilişki (Lillesand ve Kiefer, 1999)

- Ancak eğik uzaklıktan yatay uzaklığa (ground range) dönüştürüldüğünde yerdeki çözünürlük eğim açısına (θ_d) bağlı olacaktır
 - Görüntüdeki iz yönüne dik çözünürlük <u>yatay uzaklık (R</u>,) olarak ifade edilir ve yatay uzaklık eğim açısına bağlı olarak hesaplanır.

 $\square R_{r=}C\tau/2\cos\theta_d$ d: eğim açısı

- İz boyunca yani radarın uçuş yönü doğrultusundaki çözünürlüğü olarak tanımlanan <u>azimut çözünürlüğü (R_a)</u>, uydudan itibaren belirli bir açısal açıklıkla uzanan ışınım demetinin, yerde oluşturduğu iz (lob) üzerindeki son genişliği ile ifade edilir.
- Uçuş doğrultusu yönünde olup demet genişliği (β) olarak isimlendirilen uzaklığın oluşmasını sağlayan açının radyan cinsinden değeri (β_{rdy}) açısal çözünürlük (gerçek ışın genişliği) olarak adlandırılır.
- $\Box \beta_{rdy} = \lambda / D$
- \square λ : ışığın dalga boyu, D: algılayıcının anten boyu

β_{rdy=}λ / D (Açısal çözünürlük)
λ : ışığın dalga boyu
D: algılayıcının anten boyu

 $Ra=R\lambda / D$

- Azimut çözünürlüğü, λ ne kadar büyük olursa ışın genişliği o derece artar, ışın genişliği gönderilen vuruş/darbe (puls) enerjisinin dalga boyu ile doğru orantılıdır. Anten boyu (D)ile ters orantılıdır.
- Görüntüdeki azimut çözünürlüğüne karşılık gelen yerdeki demet genişliği uydudan olan eğik uzaklık (*R*) ile doğru orantılıdır.

Yerdeki noktaların uyduya olan uzaklığı arttıkça demet genişliği ve dolayısıyla da azimut çözünürlük değeri büyüyecektir.

Bu durumda da uyduya yakın alım noktasındaki 1 ve 2 nolu hedefler birbirinden ayırt edilebilirlerken uzak alım noktasındaki 3 ve 4 hedefleri ayırt edilemeyeceklerdir.

Yapay Açıklıklı Radar (Synthetic Aperture Radar-SAR)

- Yüksek bir çözünürlük kısa darbe vuruş süresi ve enerji seviyesi yüksek bir dalga gönderilmesi ile elde edilir
- Ancak bunu elde etmekte mühendislik anlamında bazı kısıtlamalar ile karşılaşılır.
- Radar dalga boyu (beam width) anten boyu ile ters orantılıdır
- Bu da uzun antenin dar bir ışın yollayacağı, böylece daha yüksek ayırma gücü elde edileceği anlamına gelir.
- Bu durumda, yüksek bir azimut çözünürlüğü anten boyunu arttırarak elde edilir.
- Ancak bir uydu yada uçak üzerinde taşınabilecek anten boyu sınırlıdır. Uçaklar için anten boyu 1-2 m ile sınırlı iken uydular için bu uzunluk ancak 10-15 m'ye kadar artmaktadır

Yapay Açıklıklı Radar (Synthetic aperture Radar) SAR/ SLAR (Side Looking Airborne Radar)

- Anten boyunu daha fazla uzatmak mümkün olmadığından ayırma gücünü arttırabilmek için bu sınırlamanın önüne geçebilmek amacıyla geri saçılan yansımayı farklı bir şekilde kaydederek ve işleyerek uzun bir antenin işlevini yapay olarak yapabilen yapay açıklıklı radar (SAR) sistemden yararlanılır, böylece azimut yönündeki çözünürlük arttırılmış olur.
- SAR sistemleri, SLAR sistemlerle aynı geometrik özelliklerde ve elektro-fizik koşullarında fakat bu defa uçakların uçuş mesafesinde değil uzaydan gerçekleştirilmektedir.

Radar algılama sistemleri (a) Gerçek açıklıklı. (b) Yapay açıklıklı.

Yüksek çözünürlük için; uzun anten boyu, dar ışın genişliği □ SAR sisteminde Doppler prensibi ve platformun hareketliliğinden faydalanılarak anten boyu yapay olarak uzatılır.

Her dalga kendisinden bir önce yayınlamış dalgadan daha kısa mesafe kat edecektir. Böylece dalgalar gitgide azalan zaman farkları ile alıcıya ulaşırlar.

T zamanı içinde ki tüm darbe tekrarlama sürelerinin yansımalarının genliklerini ve faz açılarını kaydeder. Bu verilerden faydalanılarak, ancak anten uzunluğu $v \cdot$ T(v = platform hızı) olan çok daha büyük bir antenle elde edilmesi mümkün olabilen bir sinyal yeniden oluşturulur (reconstructed). *T* zamanı arttırılarak antenin "yapay açıklığı" büyütülebilir ve böylece daha iyi çözünürlük elde edilebilir.

Radar görüntüsünde geometrik hatalar

Kısa görüntüleme (forshortening)

ULENT

- Görüntüsü alınan bölgenin gerçek mesafesinin olduğundan kısa kaydedilmesi olayıdır.
- Dağın tabanının tepesinden önce kaydedilir.Hata büyüklüğü geliş açısına bağlıdır.
- Işığın geliş açısı ile birlikte arazinin eğim açısına da bağlıdır.

(Franceschetti ve Lanari, 1999)

Radar görüntüsünde geometrik hatalar

Ters görüntüleme (Layover)

- Dağlık bölgede tepenin dağın tabanından önce kaydedilmesidir.
- Ters görüntüleme daha çok enerjinin geliş açısının küçük olduğu zamanlar gerçekleşir, bu da pek çok nesnenin görüntülenememesine neden olur.

Gölge (Shadow)

- Dağlık bölgelerde
- Dik geliş açısı kullanıldığında görülür.
- Bu bölgelere ait geri saçılım bilgisi kayıt edilemediği için siyah kaydedilir.

(Franceschetti ve Lanari, 1999)

Kısa görüntüleme (Foreshortening)
Ters görüntüleme (Layover)
Gölge (Shadowing)

Yükselen yörünge doğuyaAlçalan yörünge batıya

http://treuropa.com/technique/sar-imagery/

RADAR bantları

Bantlar	Frekans (GHz)	Dalga boyu(cm)
Р	0.225 – 0.39	133–76.90
L	0.39 – 1.55	76.9–19.40
S	1.55 – 3.90	19.4–7.69
С	3.9 – 5.75	7.69–5.21
X	5.75 – 10.90	5.21–2.75
Ku	10.9 – 18	2.75–1.67
К	18 – 26.50	1.67–1.13
Ka	26.5 – 36	1.13–0.83
Q	36 – 46	0.83–0.63
V	46 – 56	0.63–0.53
W	56 – 100	0.53–0.30

Radar algılayıcı bantları kullanılan dalga boyu ve frekansına göre çeşitli harflerle anılırlar (Hussin, 2005).

RADAR bantları

Bantlar	Frekans (GHz)	Dalga boyu(cm)
Р	0.225 – 0.39	133–76.90
L	0.39 – 1.55	76.9–19.40
S	1.55 – 3.90	19.4–7.69
С	3.9 – 5.75	7.69–5.21
X	5.75 – 10.90	5.21-2.75
Ku	10.9 – 18	2.75–1.67
К	18 – 26.50	1.67–1.13
Ka	26.5 – 36	1.13–0.83
Q	36 – 46	0.83–0.63
V	46 – 56	0.63–0.53
W	56 – 100	0.53–0.30

Radar algılayıcı bantları kullanılan dalga boyu ve frekansına göre çeşitli harflerle anılırlar (Hussin, 2005).

 Aktif uzaktan algılamada kullanılan enerjinin dalga boyları, objelerin bu aralıklarda gösterdiği tepkilere göre değişir.

Örneğin; X bant (2.4-3.75 cm) objelerin yüzeyinden gerisaçılır.

C bant (3.75-7.5 cm) objelerin yüzeye yakın bölgelerine ulaşabilmektedir.

L bant (15-30 cm) özellikle bitki dokusunun altındaki zemin vb gibi objelere ulaşabilmektedir.

SAR görüntülerinde renk bilgisi, hedef nesnelerin pürüzlülüğü, yükseklik, dalga boyu, geliş açısı ve polarizasyona bağlıdır.

Ku band-2 cm

P band – 290 cm

SIR-B L Band HH

Radar Görüntüsü

Multispektral ve SAR görüntüsü

- Elektro manyetik enerjinin elektrik alanının yönü anlamına gelmektedir
- Radar sistemleri lineer (yatay yada düşey) yada dairesel olarak ışınım yollayacak şekilde tasarlanmış olup yine aynı şekilde yatay, düşey yada dairesel olarak geri saçılan enerjiyi kaydetmektedirler

Düşey (Vertical) Polarizasyon

Yatay (Horizontal)Polarizasyon

- Elektromanyetik enerjinin vuruşu (pulse)anten tarafından yatay polarizasyonlu yada düşey polarizasyonlu olarak iletilir.
- İşınımın gönderilmesi ve alınmasında 4 farklı kombinasyon da polarizasyon mümkündür

- HH-yatay gönderme yatay alma
- VV-düşey gönderme düşey alma
- HV-yatay gönderme düşey alma
- VH- düşey gönderme yatay alma

İşını gönderme ve alma yönü

aynı ise benzer-polarizasyonlu (liked-polarized)

birbirinin tersi çapraz-polarizasyonlu (cross-polarized)

Dalga boyunun farklılığı gibi sinyalin yollanma ve alınma polarizasyonuna bağlı olarak ışınım yer yüzeyi ve objelerle farklı olarak etkileşim gösterir ve farklı miktarlarda geri saçılma yapar. Bu nedenle farklı polarizasyonlarda kaydedilmiş radar görüntüleri aslında birbirini bütünleyici bilgiler taşıyacak şekilde kaydedilmiş olur.

Left circular polarization Right circular polarization

Polarizasyon

- Tek Polarizasyon: VV, HH
- Tek çapraz Polarizasyon: HV, VH
- Çift Polarizasyon: VV/HH, HH/VV, HH/HV, VV/VH
- Tam Polarizasyon: HH+HV+VH+VV
- Yapay renkli görüntü oluşturularak farklı nesneler görüntülenebilir.

RapidEye 543

Lavalle 2008

•Yer yüzeyine yollanan enerji ile uyduya geri dönen enerji arasındaki oran hesaplanarak oluşturulur.

•Algılayıcıya geri dönen enerjiye geri saçılma (backscatter) denir

SAR sistemlerinde enerji transferi (Canadian Space Agency, 1996).

Amplitude = $A = \sqrt{I^2 + Q^2}$

- Radar görüntüleri kompleks bir görüntüdür, (genlik+faz)
- Görüntü gerçel (real) ve sanal (imaginary) bileşenlerden oluşur.
- Genlik (vektörün uzunluğu) ve faz (vektörün yönü) bilgisi içeren radar işareti gerçel ve sanal kısımlardan oluşan bir vektör olarak ifade edilir. Rayleigh saçılımı
 - Cos değeri gerçel bileşenini, sin değeri sanal bileşeni gösterir ve vektörel olarak dalganın faz ve genlik billeşenini oluşturur.
- Gerçel ve sanal bileşenler bazen "I" (In-Phase) ve "Q" (Quadrature, 90^o ötelenmiş) şeklinde ifade edilir. Sinyal fazı "arctan(Q/I)" ve sinyal genliği "sqrt (I² + Q²)" eşitlikleri ile ifade edilir.

A= Genlik (Amplitude) (Rayleigh) I=A² I= Şiddet (P-Güç)

Toplam tüm koherent bileşenler (kırmızı vektör)

 Herbir gri vektör çözünürlük hücresi içindeki saçıcıya aittir

•Pikselin sonuçta oluşan genliği (kırmızı vektör) tüm bağımsız bileşenlerin toplamıdır

SAR geometrik polarizasyonun fonksiyonu olarak nesneden geri saçılım sinyali ölçer, radar kesiti (radar cross-section):

$$\sigma = 4\pi R^2 \frac{P_s}{P_i}$$

- σ: görünen yüzey (m²), geri yansıtma yeteneği için ölçü
- R: menzil (radar-nesne arası uzaklık)
- $\square P_s$: nesneden yansıyan güç
- P_i: radar hedefi üzerindeki gönderici gücü

- Geri saçılım katsayısı (backscattering coefficient):
- Dağınık nesneler için herbir çözünürlük hücresi pekçok saçıcı içerir ve faz konuma bağlı olarak çeşitlilik gösterir, geri saçılım:

$$\sigma^{\circ} = \frac{4 \pi R^2}{\Delta A} \frac{P_s}{P_i}$$

ΔA, aydınlatılan yüzey alanı (fazın sabit olduğu varsayılır)

- Görüntülenen bir alanın geri saçılması o bölgenin
 - topografyasına
 - pürüzlülüğüne (cm büyüklüğünde)
 - nem oranı ile doğrudan etkilenen di-elektrik özelliğine bağlı olarak değişiklik gösterir
- Geri saçılmanın az olması koyu renkli yani gri skalanın yaklaşık siyah aralığında görüntü oluşmasına neden olurken, yüksek geri saçılmalar açık tonlu yani gri skalanın beyaza yakın aralığında görüntü verir.

Renkli görüntü

Elektromanyetik spektrumun tek bir aralığında kayıt yaptığından sadece tek bir bant olarak siyah-beyaz bir görüntü verebilir

 Yerleşim alanları daima köşe yansıtıcısı (corner reflector) özelliği göstermesi nedeniyle daha parlak bir görünüme sahiptir

Farklı yer yüzeyi özelliklerine göre geri saçılma (Canadian Space Agency, 1996).

Radar Işınlarının Nesne İle Etkileşimi Görüntüye Etkisi

•Pürüzsüz yüzeyler (A), gelen enerjiyi saçılmadan yansıtırlar ve gönderilen enerjinin ancak küçük bir miktarı algılayıcıya geri dönebilmektedir ; koyu görünürler

•Pürüzlü yüzeyler (B), gelen enerjiyi bütün yönlerde hemen hemen eşit miktarda saçarlar ve saçılan enerjinin büyük bir kısmı radar sistemlerince kaydedebilir ;açık tonlarda görünürler.

•<u>Alım açısı</u> ve <u>dalga boyu g</u>enişledikçe yüzey daha pürüzsüz gözükecektir yakın görüntüleme noktasından uzak görüntüleme noktasına doğru ilerledikçe, algılayıcıya dönen enerji azalacak ve görüntünün gri ton değeri koyulaşacaktır.

X-band TerraSAR-X HH 3m

Radar Işınlarının Nesne İle Etkileşimi Görüntüye Etkisi

•Nem miktarı objenin elektrik özelliklerini etkilemektedir

•Elektrik özelliklerindeki değişiklikler de objenin gelen elektromanyetik enerjiyi yutma, iletme ve geri saçılma özelliklerini etkilemektedir.

Bu sebeple

Objelerin veya yer yüzeyinin nem miktarı gelen radar enerjisinin yansımasını ve bu yansımanın radar görüntüsündeki görünüşünü etkileyecektir.

Genellikle gerisaçılma (görüntünün parlaklığı) nem miktarı arttıkça artmaktadır [www.ccrs.nrcan.gc.ca].

Radar İşınlarının Nesne İle Etkileşimi

NIT UNIL

1992

ERSIT

ISPRS Journal of Photogrammetry and Remote Sensing 107 (2015) 3-2 Photos taken in field work

Pauli RGB compostion images

Scattering machanisms

Radar İşınlarının Nesne ile Etkileşimi ve Görüntüye Etkisi

Radar enerjisinin yüzeyden derinliklere ilerlemesi mümkün olduğunda volumetrik (hacim) saçılma (volume scattering) gerçekleşir
Hacim saçılması belli bir hacimdeki yüzeyden yada ortamdan olan saçılmadır ve saçılma olan yüzeyin farklı bileşenlerinden aynı anda gerçekleşen yansımlar topluluğudur.

Örneğin ormanda saçılma en tepede bitki örtüsünün yapraklarından, derinlerde yaprak ve dallarından, daha derinlerde ise ağaç gövdesi ve topraktan olan yansımadır. Hacim saçılması geri saçılan enerjinin miktarına bağlı olarak görüntünün gri ton değerinin artmasına da azalmasına da neden olabilir.

- Benek, SAR görüntüsünde doğal olarak oluşan ve görüntü kalitesini düşüren tuz-biber (saltpepper) oluşturan gürültüdür
- Gürültüyü azaltırken:
 - Radyometrik bilgide
 - Mekansal çözünürlükte
 - Kenar bilgisinde
 - Doku bilgisinde minimum kayıp amaçlanır

- Gamma Map
- Frost

Multi-looking

Kare piksele dönüşmüş, filtrelenmiş yeni görüntü

Azimuth

• Range yönünde Multi-Look Faktörü (ML_R)

• Azimuth yönünde Multi-Look Faktörü (ML_A)

bakış sayısı aşağıdaki parametrelerin fonksiyonudur:

- Azimuth da piksel aralığı (AZ)
- Slant range piksel aralığı (SR)
- Görüntü merkezinin bakış açısı (θ)
- İstenilen çözünürlük (x)

- ALOS PALSAR FBD görüntüsünün merkez bakış açısı: 38.8
- Azimuth piksel boyutu: 3.2 m
- Eğik mesafede piksel boyutu: 9.4 m
- □ → Yatay mesafe:
- 9.4 m/sin(38.8°) ≈ 15 m

Azimuth X 4L Yatay mesafe X 1L (3.2 m * 4) x (15 m * 1) = 12.8 x 15

Multi-looking

Radarsat-2 Extra Fine modu

1-look ~ 5 m resolution 4-looks ~ 10 resolution 28-looks ~ 25 m resolution

http://mdacorporation.com/

GAMMA MAP Filter

GAMMA 3*3

GAMMA 5*5

GAMMA 9*9

Gürültü-filtre (salt-and-pepper effect)

Radarsat-1 3x3 pencere

http://www.utdallas.edu/~ffqiu/published/2004Qiu-GISRS.pdf

Uzay araçları

- Uçaklar SLAR (Side Looking Airborne Radar)
- Yer bazlı algılayıcılar

Uydular

Uzay araçları- Shuttle Imaging Radar

- SIR A (1981): L-band, HH polarizasyon
- SIR-B (1984):L-band, HH polarizasyon
- <u>SIR-C/X-SAR</u> (1994): X C-L-band, tam
 polarizasyon

- Shuttle Radar
 Topography Mission –
 SRTM
- NASA, DLR, ASI
- Subat 2000, 11 gün
- X ve C band
- 25m ve 90m
 çözünürlük küresel
 SYM

 Alman Uzay Birimi: F-SAR (X-, C-, S-, L-, P-) (çöz<1m)
 E-SAR (X-, C-, L-, Pband)

NASA: AIRSAR(C-, L- ,P-band) 1m,

F SAR

http://www.dlr.de/hr/desktopdefault.aspx/tabid-2326/3776_read-5691/

- NASA: UAVSAR (Uninhabited Aerial Vehicle SAR)
- L-band
- Tam polarizasyonlu (HH, HV, VH, VV)
- 1,8m x 0,8m (rangeazimuth)

http://uavsar.jpl.nasa.gov/technology/

Yeraltı Radarı (**G**round **P**enetrating **R**adar GPR)

- Arkeolojik araştırmalar
- Şehir altyapılarının araştırılması
- Yüzeye yakın (40m) alanlarda maden çalışmalarında
- Tüp geçitler, su boruları
- Bitki kökler ve toprak nemi

GPR arkeolojik çalışma İsveç Norrköping

120 cm derinlikte

http://archeosciences.revues.org/1630

Yer Tabanlı Radar (Ground Based Radar-GB-SAR)

- Altyapı
- Baraj
- Deformasyon
- Eğim hareketleri, heyelan

Sık görüntü alımı Yüksek çözünürlük

http://www.scielo.br/pdf/bcg/v22n1/1982-2170-bcg-22-01-00035.pdf

SAR uydu sistemleri

	Seasat NASA 06-10 1978	ERS 1 ESA 1991-2000	J-ERS JAXA 1992-1998	RADARSAT1 CSA 1995-2013	ERS-2 ESA 1995-2011	ENVISAT ASAR ESA 2002-2012	ALOS PALSAR JAXA 2006-2011
Dalga boyu	L	С	L	С	С	С	L
Tekrarlı Geçiş (gün)	17	3, 35	44	24	3, 35	35	46
Geliş Açısı	23°	23°	40°	10°-60°	23°	13°-39°	8°-60°
Çözünürlük	25m	25m	25m	8m-100m	25m	30m, 1km	7-100m
Tarama Genişliği (km)	100	100	100	45-100-150- 300	100	100-400	70
Scan SAR Modülü	Yok	Yok	Yok	500m	Yok	100m	100m
Polarizasyon	HH	VV	HH	HH	VV	Single Cross Dual	Single Cross Dual Quad

https://directory.eoportal.org/web/eoportal/satellite-missions/

Mevcut SAR uydu sistemleri

	TerraSAR-X DLR 2007	RADARSAT2 CSA 2007	Cosmo-SkyMed ASI 2007	RISAT-2 ISRO 2009	RISAT-1 ISRO 2012	Kompsat-5 KARI 2013	ALOS-2 JAXA 2014	Sentinel-1 ESA 2014
Dalga boyu	Х	С	х	х	С	Х	L	С
Tekrarlı Geçiş	11 gün	24 gün	16 gün	14 gün	25 gün	28 gün	14 gün	12 gün
Geliş Açısı	15°-60°	10°-60°	20°-60°	20°-45°	15°-50°	25-45-55	8-70°	18°-47°
Çözünürlük	1-2-3-6- 16m	1-3-8-25-30 50-100m	1-3-15-30-100m	1-8m	1-3-9-25-50m	1-3-20m	1-3 -6 -10 m	5-30-100m
Tarama Genişliği (km)	10-30-300	20-25-50-75 100-150-300-	10-30-40	10-50	10-25-115-220	2-30-100	25-50-70-350	20-80-250-400
Scan SAR Modülü (m)	100	50-100	100-200	8	25-50	100	100	Yok
Polarizasyon	Single Co-pol Dual Quad	Single Cross/Co-pol Dual Quad	Single Cross Dual	Single	Single Dual Quad Circular	Single	Single Dual Quad	Single Dual

https://directory.eoportal.org/web/eoportal/satellite-missions/

https://directory.eoportal.org/web/eoportal/satellite-missions/p/paz

RADARSAT-2

- > Zamansal Çözünürlük
 - Aynı orbitten tekrar geçişi 24 gün

Alım modu (Tek yada Çift pol)	Kapladığı alan (km)	Mekansal çöz. (m)
Ocean Surveillance	530	Çeşitli
ScanSAR Wide	500	100
ScanSAR Narrow	300	50
Wide	150	25
Standard	100	25
Wide Fine	150	8
Fine (15)	50	8
Alım modu (Polarimetrik)		
Fine Quad-Pol	25	12
Wide Fine Quad-Pol	50	12
Standard Quad-Pol	25	25
Wide Standard Quad-Pol	50	25

Alım modu (Tek Polarizasyon)	Kapladığı alan (km)	Mekansal çöz. (m)
Spotlight	18	1
Ultra-Fine	20	3
Wide Ultra-Fine	50	3
Extra-Fine	125	5
Multi-Look Fine	50	8
Wide Multi-Look Fine	90	8
Ship Detection	450	Çeşitli

COSMO-SkyMed

COnstellation of small **S**atellites for the **M**editerranean basin **O**bservation

Uydu	Fırlatılma zamanı
COSMO-SkyMed-1	8 Haziran 2007
COSMO-SkyMed-2	9 Aralık 2007
COSMO-SkyMed-3	25 Ekim 2008
COSMO-SkyMed-4	6 Kasım 2010

COSMO-SkyMed Görüntü formatı

- Quicklook: tarama amaçlı mekansal çözünürlüğü düşürülmüş veri
- Co-registered: üstüste kaydedilmiş veri seti (örn: interferometrik ve zamansal değişim)
- Mosaiked: daha geniş alanların izlenmesi
- Speckle filtered: radyometrik çözünürlüğü iyileştirilmiş
- Interferometric ürün: interferometrik coherence ve faz
- DEM: Sayısal yükseklik modeli (interferometric techniques)

TerraSAR-X – Collection Modes

TSX Görüntü formatları

SSC - Single Look Slant Range Complex

MGD - Multi Look Ground Range Detected

- GEC Geocoded Ellipsoid Corrected
 - WGS84 reference ellipsoid

- EEC Enhanced Ellipsoid Corrected
 - WGS84 reference ellipsoid + DEM

Çözünürlük modu Spatially Enhanced Product (SE) Radiometrically Enhanced Product (RE)

TSX ürünleri

lmaging Mode	Polarisation Mode	Minimum and Maximum Number of Pixels of an MGD Product ^f	Product Size [Mb] EEC ⁹	Product Size [Mb] SSC
Staring SpotLight	Single	9.375 x 3.125 to 20.000 x 18.500	117 to 1.480	592 to 750
HS 300 MHz	Single	5.600 x 4.000 to 14.000 x 10.000	90 to 560	350 to 625
High	Single	5.000 x 2.500 to 20.000 x 10.000	50 to 800	275
SpotLight	Dual	3.333 x 1.667 to 10.000 x 5.000	33 to 300	333
Spott ight	Single	3.333 x 3.333 to 13.333 x 13.333	44 to 711	338
SpotLight	Dual	2.500 x 2.500 to 10.000 x 10.000	38 to 600	342
StrinMan	Single	7.500 x 12.500 to 24.000 x 40.000	375 to 3840	3300
Surpiviap	Dual	2.727 x 9.091 to 5.000 x 16.667	149 to 500	2667
ScanSAR	Single	12.121 x 18.182	802	5940
Wide ScanSAR	Single	12.933 to 17.733 x 13.333	690 to 946	~7500

Yükselen yörünge doğuya Alçalan yörünge batıya

http://treuropa.com/technique/sar-imagery/

- > Avrupa birliği Avrupa Uzay Kurum (European Space Agency-ESA)
- Global Monitoring for Environment and Security (GMES) Copernicus Program
- Halka açık ve tam erişim

1.1.1.10

	Sentinel-1 SAR (2014) Çift uydudan oluşur, gece-gündüz görüntü alımı
	Sentinel 2 – Multispectral (2015) Çift uydudan oluşur, yer yüzünün izlenmesi: Bitki, toprak ve kıyı alanları
	Sentinel 3 – Okyanus gözlemleri (2016) Deniz yüzeyinin topografyası, seniz ve yeryüzü sıcaklık analizi, altimetri
	Sentinel 4 – Atmosferik gözlemler Yüksek zamansal ve mekansal çözünürlük, Avrupa
2	Sentinel 5 – Atmosferik gözlemler Geniş alanların izlenmesi
ANT	Sentinel 6 – Radar altimetri Küresel deniz-yüzey yüksekliği, oşinografi ve iklim

- Level-0 Ham veri (Raw data)
- Level-1 Single Look Complex
- Level-1 Ground Range Detected (GRD)
 - Full Resolution (FR)
 - High Resolution (HR)
 - Medium Resolution (MR).
- Level-2 Ocean Swell spectra (OSW)

Sentinel-1 verilerinin çözünürlükleri

Level-1 SLC

Mode	Resolution rg x az	Pixel spacing rg x az	Number of looks	ENL
SM	1.7x4.3 m to 3.6x4.9 m	1.5x3.6 m to 3.1x4.1 m	1x1	1
IW	2.7x22 m to 3.5x22 m	2.3x17.4 m	1x1	1
EW	7.9x43 m to 15x43 m	5.9x34.7 m	1x1	1
wv	2.0x4.8 m and 3.1x4.8 m	1.7x4.1 m and 2.7x4.1 m	1x1	1

Mode	Resolution rg x az	Pixel spacing rg x az	Number of looks	ENL
SM	9x9 m	4x4 m	2x2	3.9

Level-1 GRD

Table 1: Full resolution Level-1 GRD

Mode	le Resolution Pixel spacing rg x az rg x az		Number of looks	ENL
SM	23x23 m	10x10 m	6x6	34.4
IW	20x22 m	10x10 m	5x1	4.9
EW	50x50 m	25x25 m	3x1	2.9

Table 2: High resolution Level-1 GRD

Mode	Resolution rg x az	Pixel spacing rg x az	Number of looks	ENL
SM	84x84 m	40x40 m	22x22	350-398
IW	88x87 m	40x40 m	22x5	105.7
EW	93x87 m	40x40 m	6x2	12.7
wv	52x51 m	25x25 m	13x13	123.7

Table 3: Medium resolution Level-1 GRD

$ENL \rightarrow$ effective number of looks

- İki takım uydudan oluşur (1A ve 1B)
- Sentinel 1A 03 Nisan 2014
- Sentinel 1B 25 Nisan 2016
- C-band radar

Mode	Incidence Angle	Resolution	Swath Width	Polarization (H = Horizontal V = Vertical)
Stripmap	20 - 45	5 x 5 m	80 km	HH+HV, VH+VV, HH, VV
Interferometric Wide swath	29 - 46	5 x 20 m	250 km	HH+HV, VH+VV, HH, VV
Extra Wide swath	19 - 47	20 x 40 m	400 km	HH+HV, VH+VV, HH, VV
Wave	22 - 35 35 - 38	5 x 5 m	20 x 20 km	HH, VV

Imagery Date: 4/10/2013 lat 41.540515° lon 28.446774° elev

Yükselen Sentinel-1 görüntüsü

- The Sentinel-1 standart mod
- Interferometric Wide Swath: IWS/TOPS
- (Terrain Observation with Progressive Scans)

Wright, 2016

Kıyı analizi

Çökmeler

Orman

Tarım

İklim değişimi

Doğal afet

Megakentler

Kaynak

Otomatik gemi yakalama ve izleme

- 17-19 Haziran 2013 Malta
- □ 5 COSMO-SkyMed SAR
- 2.2m x 2.2m
- 111 gemi
- %85 doğruluk

Makedonas vd. 2015

Gemi atık petrol izleme

29°20' N

122°27' E

28°32' N

122°21' E

S

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Methodik der Fernerkundung

28°29' N

122°41' E

28°59' N

122°47' E

40 Km

Tarım- Toprak nem değişimi

http://earth.esa.int/workshops/ers97/papers/wegmuller3/index-2.html

LAND 1992

Çok zamanlı SAR

TDX EEC SE Ascending orbit, 42 degrees incidence angle. HH polarisation; 0.38 az x 0.88 rg m

- R: 2013-07-20 G: 2013-07-31 B: 2013-08-11
- Harwell/Oxford BIC UK

PALSAR

Orman

AVNIR2 (optik)

(C)JAXA, METI analyzed by JAXA

http://global.jaxa.jp/press/2010/10/20101021_daichi_e.html

Orman-İsveç

Orman kütle hesabı
 2005-2006 Envisat
 0–500 m3/ hectar
 Envanter çalışmaları

Şehir alanlarının büyümesi

□ 78.75%

https://lirias.kuleuven.be/handle/123456789/426791

Boundary or naming information implies no endorsement from the producer

Geographic information has limitations due to the scale, resolution, dele and interpretation of the original source materials.

The producer accepts no legal responsibility or lability whatsoever with regard to the use of this product. Product is covered by the EU Security Regulation 2001/254;EC.

Buzul hareketleri

http://www.awi.de/en/news/press_releases/detail/item/huge_iceberg_breaks_away_from_the_pine_islan d_glacier_in_the_antarctic/?cHash=2e9c4e2ca33a2385bf8e8f881c41b0ca

Sel alanlarının tespit edilmesi

EVIT

1993

SITE

ENT

110

Automated Flood Extraction using TerraSAR-X ScanSAR Acquisition

Location of Scene:

Permanent water
Poot entert (07 D1 2011)
City

Satellite Image Information

Acquisition date	2008-05-14	2011-01-07
Satellite	TerraSAR-X	
Inaging Mode	ScanSAR	
Ground Range Resolution	18m	
Poterisation	HH	
Incidence Angle	27.5	
Pass Direction	Ascenting	
Acquisition time (start)	08/20/46	08:20:59
Acquisition time (end)	08:21:08	08:21:21
Product Type	EEC	
Resolution Mode	Radiometric Enhanced	
BAFA-Reference number	415-12 00-1105725 415-12 00-110572	

0 2.5 5 10 15 20 25

Scale: 1:200.000 for DIN A1 printing

Interpretation

The neglective technological activities of the Figure Huse on January VP, 2011. The Nonlings were parameters to be parameters a fractional of the Dispersions (Two Johns and an optimum, including a manufacture) and parameters of the Verifield of the supervision (and and C. 2011. The Sing Statement procession activities may an engine of Herschell's development on the L 2011. The supervision of the Statementer activities are supervised by the Sing Parameter.

Credits & Copyright

codes and the disease the lines lines they add from 227 (1997).

Very Linder 1 an attraction of interprete the specific and a structure as a structure and an attraction of the specific preten

Map Projection

Geographic Universal Transverse Mercator Ellipsoid: WGS 84 Ellipsoid: WGS 84

Datum: WGS 84 Datum: WGS 84 Zone: 585

ASTRIUM GEO-Information Services / @ Infoterra GmbH 2011

Total of May permittees 2010 0128. Sing temption consists by May Production and Carlinguates Generation Statements Devices.